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Renormalization Group for the φ4 Model

We will now see the full power of the RG as applied to critical phenomena. The
treatment, here and elsewhere, will emphasize the key ideas and eschew long and detailed
calculations. In this and the next chapter I will focus on issues I found confusing rather than
complicated. For example, a five-loop Feynman diagram is complicated but not confusing;
I know what is going on. On the other hand, the relationship between renormalization of
continuum field theories with one or two couplings and Wilson’s program with an infinite
number of couplings used to confuse me.

Because of universality, we can choose any member to study the whole class. For the
Ising model the action has to have Z2 symmetry, or invariance under sign reversal of the
order parameter:

S(φ)= S(−φ). (13.1)

(An infinitesimal symmetry-breaking term of the form hφ will be introduced to find
exponents related to magnetization. Having done that, we will set h = 0 in the rest of
the analysis.)

I will, however, discuss an action that enjoys a larger U(1) symmetry:

S(φ,φ∗)= S(φeiθ ,φ∗e−iθ ), (13.2)

where θ is arbitrary. (We can also see this as O(2) symmetry of S under rotations of the
real and imaginary parts of φ.) I discuss U(1) because the computations are very similar
to the upcoming discussion of non-relativistic fermions, which also have U(1) symmetry.
I will show you how a minor modification of the U(1) results yields the exponents of the
Z2 (Ising) models.

13.1 Gaussian Fixed Point

The Gaussian fixed point is completely solvable: we can find all the eigenvectors and
eigenvalues of the linearized flow matrix T . It also sets the stage for a non-trivial model of
magnetic transitions amenable to approximate calculations.
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13.1 Gaussian Fixed Point 225

The partition function for the Gaussian model is

Z =
∫ [

Dφ∗(k)
]

[Dφ(k)]e−S∗(φ,φ∗), (13.3)

where we have an asterisk on S∗ because it will prove to be a fixed point. (The asterisk on
φ∗, of course, denotes the conjugate.) The action is

S∗(φ,φ∗)=
∫ �

0
φ∗(k)k2φ(k)

ddk

(2π)d
, (13.4)

where the limits on the integral refer to the magnitude of the momentum k. This action
typically describes some problem on a lattice. There are no ultraviolet singularities in this
problem with a natural cut-off in momentum k � π

a , where a is the lattice constant. We
want to invoke the RG to handle possible infrared singularities at and near criticality. In
that case we may focus on modes near the origin. We will begin with a ball of radius�
 1

a
centered at the origin and ignore the shape of the Brillouin zone for k� 1

a .
The number of dimensions d is usually an integer, but we must be prepared to work with

continuous d. In general, we will need to make sense of various quantities like vectors, dot
products, and integrals in non-integer dimensions. For our discussions, we just need the
integration measure for rotationally invariant integrands:

ddk= kd−1dkSd, (13.5)

where

Sd = 2π
d
2

�( d
2 )

(13.6)

is the “area” of the unit sphere in d dimensions. We will rarely need this precise expression.

As a first step we divide the existing modes into slow and fast ones based on k:

φs = φ(k) for 0≤ k≤�/s (slow modes), (13.7)

φf = φ(k) for �/s≤ k≤� (fast modes), (13.8)

where s > 1 is the scale parameter that decides how much we want to eliminate. We are
going to eliminate the modes between the new cut-off �/s and the old one �.

The action itself separates into slow and fast pieces in momentum space:

S∗(φ,φ∗)=
∫ �/s

0
φ∗(k)k2φ(k)

ddk

(2π)d
+

∫ �

�/s
φ∗(k)k2φ(k)

ddk

(2π)d

(13.9)

= S∗(slow)+ S∗(fast), (13.10)

  



226 Renormalization Group for the φ4 Model

and the Boltzmann weight factorizes over slow and fast modes. Thus, integrating over the
fast modes just gives an overall constant Z(fast) multiplying the Z for the slow modes:

Z =
∫ [

Dφ∗s (k)
]

[Dφs(k)]e−S∗(φs)

∫ [
Dφ∗f (k)

]
[Dφf(k)]e−S∗0(φf)

(13.11)

≡
∫ [

Dφ∗s (k)
]

[Dφs(k)]e−S∗(φs)Z(fast) (13.12)

=
∫ [

Dφ∗s (k)
]

[Dφs(k)]e−S∗(φs)+lnZ(fast). (13.13)

We can ignore lnZ(fast) going forward, because it is independent of φs and will drop
out of all φs correlation functions.

The action after mode elimination,

S′∗(φ,φ∗)=
∫ �/s

0
φ∗(k)k2φ(k)

ddk

(2π)d
, (13.14)

is Gaussian, but not quite the same as the action we started with,

S∗(φ,φ∗)=
∫ �

0
φ∗(k)k2φ,(k)

ddk

(2π)d
(13.15)

because the allowed region for k is different.
We remedy this by defining a new momentum,

k′ = sk, (13.16)

which runs over the same range as k did before elimination. The action now becomes

S′∗(φ,φ∗)=
∫ �

0
φ∗

(
k′

s

)[
k′2

s2

]
φ

(
k′

s

)
ddk′

sd(2π)d
(13.17)

= s−(d+2)
∫ �

0
φ∗

(
k′

s

)
k′2φ

(
k′

s

)
ddk′

(2π)d
. (13.18)

Due to this constant rescaling of units, the cut-off remains fixed and we may set �= 1 at
every stage. (Of course, the cut-off decreases in fixed laboratory units. What we are doing
is analogous to using the lattice size of the block spins as the unit of length as we eliminate
degrees of freedom.)

To take care of the factor s−(d+2) we introduce a rescaled field:

φ′(k′)= s−(
d
2+1)φ

(
k′

s

)
≡ ζ−1(s)φ

(
k′

s

)
. (13.19)

Notice that for every φ′(k′) for 0 ≤ k′ ≤ � there is a corresponding original field that
survives elimination and is defined on a smaller sphere (0≤ k≤�/s).
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In terms of φ′, the new action coincides with the original one in every respect:

S′∗(φ′,φ ′∗)=
∫ �

0
φ
′∗(k′)k′2φ′(k′) ddk′

(2π)d
. (13.20)

Thus, S∗ is a fixed point of the RG with the following three steps:

• Eliminate fast modes, i.e., reduce the cut-off from � to �/s.
• Introduce rescaled momenta, k′ = sk, which now go all the way to �.
• Introduce rescaled fields φ

′
(k′) = ζ−1φ(k′/s) and express the effective action in terms

of them. This action should have the same coefficient for the quadratic term. (In general,
the field rescaling factor ζ−1 could be different from the s−(1+d/2) that was employed
above.)

With this definition of the RG transformation, we have a mapping from actions defined
in a certain k-space (a ball of radius �) to actions in the same space. Thus, if we represent
the initial action as a point in a coupling constant space, this point will flow under the RG
transformation to another point in the same space.

As the Gaussian action is a fixed point of this RG transformation, it must correspond to
ξ =∞, and indeed it does:

G(k)= 1

k2
↔G(r)= 1

rd−2
. (13.21)

Here is our first critical exponent associated with the Gaussian fixed point:

η= 0. (13.22)

This result is independent of d.
We now want to determine the flow of couplings near this fixed point. We will do this

by adding various perturbations (also referred to as operators) and see how they respond
to the three-step RG mentioned above. The perturbations will be linear, quadratic, and
quartic in φ. (Operators with more powers of φ or more derivatives will prove highly
irrelevant near d = 4, the region of interest to us.) We will then find the eigenvectors and
eigenvalues of the linearized flow matrix T and classify them as relevant, irrelevant, or
marginal. In general, the operators we add will mix under this flow and we must form
linear combinations that go into multiples of themselves, i.e. the eigenvectors of T . The
critical exponents and asymptotic behavior of correlation functions will follow from these.

13.1.1 Linear and Quadratic Perturbations

The perturbations can be an even or odd power of φ or φ∗ (which I may collectively refer
to as φ).

The uniform magnetic field couples linearly to φ and corresponds to an odd term hφ(0),
where the argument (0) refers to the momentum. (Again, we must use the perturbation

  



228 Renormalization Group for the φ4 Model

hφ+h∗φ∗. We do not bother because the scaling is the same for both, and denote by h the
coupling linear in the field.)

We have, from Eq. (13.19), which defines the rescaled field,

hφ(0)= hζφ′(0 · s)= hs1+ 1
2 dφ′(0) def= hsφ

′(0), (13.23)

which means the renormalized h is

hs = hs1+ 1
2 d. (13.24)

Having found how an infinitesimal h gets amplified by RG, we will set h = 0 as we
continue our analysis. We will not consider φ3 because it is a redundant operator [1].
What this means is that if we began with

S=
∫ [

hφ+ r0φ
2+ vφ3+ uφ4

]
ddx, (13.25)

the φ3 term can be eliminated by a shift φ→ φ− v
4u .

Higher odd powers of φ or terms with an even number of extra derivatives will prove
extremely irrelevant near d= 4, which will be our focus.

Now we turn to quadratic and quartic perturbations. First, consider the addition of the
term

Sr =
∫ �

0
φ∗(k)r0φ(k)

ddk

(2π)d
, (13.26)

which separates nicely into slow and fast pieces. Mode elimination just gets rid of the fast
part, leaving behind the tree-level term

Stree
r =

∫ �/s

0
φ∗(k)r0φ(k)

ddk

(2π)d
. (13.27)

The adjective tree-level in general refers to terms that remain of an interaction upon setting
all fast fields to 0. Keeping only this term amounts to eliminating fast modes by simply
setting them to zero. Of course, the tree-level term will be viewed by us as just the first
step.

If we express Stree
r in terms of the new fields and new momenta, we find

S′r = s2
∫ �

0
φ′∗(k′)r0φ

′(k′) ddk′

(2π)d
(13.28)

def=
∫ �

0
φ′∗(k′)r0sφ

′(k′) ddk′

(2π)d
, which means (13.29)

r0s = r0s2. (13.30)

In other words, after an RG action by a factor s, the coupling r0 evolves into r0s = r0s2.
Since Sr lacks the two powers of k that S0 has, it is to be expected that r0 will get amplified
by s2.

  



13.1 Gaussian Fixed Point 229

We have identified another relevant eigenvector in r0φ
2.

We may identify r0 with t, the dimensionless temperature that takes us off criticality.
Since the correlation length drops by 1/s under this rescaling of momentum by s,

ξ(r0)= s1ξ(r0s) (13.31)

= s1ξ(r0s2) (13.32)

= (r0)
− 1

2 ξ(1), (13.33)

which means that

ν = 1

2
(13.34)

for all values of d. We do not need the RG to tell us this because we can find the propagator
with a non-zero r0 exactly:

G(k)� 1

k2+ r0
↔G(r)� e−

√
r0r

rd−2
≡ e−r/ξ

rd−2
, i.e., (13.35)

ξ = r
− 1

2
0 . (13.36)

In general, the quadratic perturbation could be with coupling r(k) that varies with k.
Given the analyticity of all the couplings in the RG actions (no singularities in and no
singularities out), we may expand

r(k)= r0+ r2k2+ r4k4+·· · (13.37)

and show that

r2s = r2, (13.38)

r4s = s−2r4, (13.39)

and so on. Thus, r2 is marginal, and adding it simply modifies the k2 term already present
in S0. If you want, you could say that varying the coefficient of k2 in S0 gives us a line of
fixed points, but this line has the same exponents everywhere because the coefficient of k2

may be scaled back to unity by field rescaling. (The Jacobian in the functional integral will
be some constant.) The other coefficients like r4 and beyond are irrelevant.

Exercise 13.1.1 Derive Eqs. (13.38) and (13.39).

13.1.2 Quartic Perturbations

When we consider quartic perturbations of the fixed point, we run into a new complication:
the term couples slow and fast modes and we have to do more than just rewrite the old
perturbation in terms of new fields and new momenta. In addition, we will find that mode
elimination generates corrections to the flow of r0, the quadratic term.

  



230 Renormalization Group for the φ4 Model

Consider the action

S= S∗ + Sr+ Su (13.40)

=
∫ �

0
φ∗(k)k2φ(k)

ddk

(2π)d
+ r0

∫ �

0
φ∗(k)φ(k) ddk

(2π)d

+ u0

2!2!
∫
|k|<�

φ∗(k4)φ
∗(k3)φ(k2)φ(k1)

3∏
i=1

ddki

(2π)d
(13.41)

≡ S0+ SI, where (13.42)

S0 = S∗ + Sr =
∫ �

0
φ∗(k)(k2+ r0)φ(k)

ddk

(2π)d
, (13.43)

SI = Su ≡
∫
�

φ∗(4)φ∗(3)φ(2)φ(1)u0, (13.44)

k4 = k1+ k2− k3. (13.45)

Notice the compact notation used for the quartic interaction in Eq. (13.44). The subscript
in SI stands for interaction, which is what Su is here.

Remember that S0 is not the fixed point action, it is the quadratic part of the action
and includes the r0 term. With respect to the Gaussian fixed point S∗, it is true that Sr is
a perturbation, but in field theories, Sr is part of the non-interacting action S0 and only
Su ≡ SI is viewed as a perturbation. In other words, Sr perturbs the Gaussian fixed point
action, while SI perturbs the non-interacting action. For what follows it is more expedient
to use the decomposition S= S0+ SI, where SI = Su is quartic.

13.1.3 Mode Elimination Strategy

I will now describe the strategy for mode elimination for the case

S(φs,φf)= S0(φs)+ S0(φf)+ SI(φs,φf), (13.46)

where S0 has been separated into slow and fast pieces whereas SI cannot be separated in
that manner.

Let us do the integration over fast modes:

Z =
∫
[Dφ∗s ][Dφs]e−S0(φs)

∫
[Dφ∗f ][Dφf]e−S0(φf)e−SI(φs,φf)

(13.47)
def=

∫
[Dφ∗s ][Dφs]e−Seff(φs), (13.48)
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which defines the effective action Seff(φs). Let us manipulate its definition a little:

e−Seff(φs) = e−S0(φs)

∫
[Dφ∗f ][Dφf]e−S0(φf)e−SI(φs,φf)

= e−S0(φs)

∫ [Dφ∗f ][Dφf]e−S0(φf)e−SI(φs,φf)∫ [Dφ∗f ][Dφf]e−S0(φf)

∫
[Dφf][Dφ∗f ]e−S0(φf)︸ ︷︷ ︸

Z0f

.

(13.49)

Dropping Z0f, which does not affect averages of the slow modes,

e−Seff(φs) = e−S0(φs)
〈
e−SI(φs,φf)

〉
0〉

def= e−S0−δS′ , (13.50)

where 〈 〉0〉 denotes averages with respect to the fast modes with action S0(φf).
Combining Eq. (13.50) with the cumulant expansion, which relates the mean of the

exponential to the exponential of the means,

〈
e�

〉= e

[
〈�〉+ 1

2 (〈�2〉−〈�〉2)+···
]
, (13.51)

we find

Seff = S0+〈SI〉− 1

2
(〈S2

I 〉− 〈 SI〉2)+·· · (13.52)

It is understood that this expression has to be re-expressed in terms of the rescaled fields
and momenta to get the final contribution to the action. We will do this eventually.

Exercise 13.1.2 Verify the correctness of the cumulant expansion Eq. (13.51) to the order
shown. (Expand e� in a series, average, and re-exponentiate.)

Since SI is linear in u, Eq. (13.52) is a weak coupling expansion. It is now clear what
has to be done. Each term in the series contains some monomials in fast and slow modes.
The former have to be averaged with respect to the quadratic action S0(φf) by the use of
Wick’s theorem. The result of each integration will yield monomials in the slow modes.
When re-expressed in terms of the rescaled fields and momenta, each will renormalize
the corresponding coupling. In principle, you have been given all the information to carry
out this process. There is, however, no need to reinvent the wheel. There is a procedure
involving Feynman diagrams that automates this process. These rules will not be discussed
here since they may be found, for example, in Sections 3–5 of [2], or in many field theory
books. Instead, we will go over just the first term in the series in some detail and comment
on some aspects of the second term. Readers familiar with Feynman diagrams should
note that while these diagrams have the same multiplicity and topology as the field theory
diagrams, the momenta being integrated out are limited to the shell being eliminated, i.e.,
�/s≤ k≤�.
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The leading term in the cumulant expansion in Eq. (13.52) has the form

〈SI〉 = 1

2!2!
〈∫
|k|<�

(φf+φs)
∗
4(φf+φs)

∗
3(φf+φs)2(φf+φs)1u0)

〉
0〉

, (13.53)

where the subscript 0〉 stands for the average with respect to the quadratic action of the fast
modes. The 16 possible monomials fall into four groups:

• Eight terms with an odd number of fast modes.
• One term with all fast modes.
• One term with all slow modes.
• Six terms with two slow and two fast modes.

We have no interest in the first two items: the first because they vanish by symmetry and
the second because it makes a constant contribution, independent of φs, to the effective
action.

The one term with all slow fields makes a tree-level contribution

Stree
u = 1

2!2!u0

∫
k<�/s

φ∗(k4)φ
∗(k3)φ(k2)φ(k1)

3∏
i=1

ddki

(2π)d
(13.54)

to the action. The momentum and field have not been rescaled yet, as is evident from the
cut-off.

That leaves us with six terms which have two fast and two slow fields. Of these, two are
no good because both the fast fields are φf’s or φ∗f ’s, and these have zero average by U(1)
symmetry. This leaves us with four terms which schematically look like

φ∗f φ∗s φfφs, φ
∗
s φ
∗
f φfφs, φ

∗
s φ
∗
f φsφf, φ

∗
f φ
∗
s φsφf. (13.55)

All four terms make the same contribution to Sr (modulo dummy labels, which takes care
of the 1

2!2! up front):

δSr = u0

∫
φ∗s (4)φs(2)dk4dk2〈φ∗f (3)φf(1)〉dk3dk1δ(4+ 3− 2− 1), (13.56)

where I am using a compact notation:

δ(4+ 3− 2− 1)≡ (2π)dδ(k4+ k3− k2− k1), (13.57)

dk≡ ddk

(2π)d
. (13.58)

Using

〈φ∗f (3)φf(1)〉 = δ(3− 1)

k2
3+ r0

, (13.59)
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Let us take stock. We began with

S= S∗ + Sr+ Su (13.61)

=
∫ �

0
φ∗(k)k2φ(k)

ddk

(2π)d
+ r0

∫ �

0
φ∗(k)φ(k) ddk

(2π)d

+ u0

2!2!
∫
|k|<�

φ∗(k4)φ
∗(k3)φ(k2)φ(k1)

3∏
i=1

ddki

(2π)d

(13.62)

≡ S0+ SI. (13.63)

We ended up with

Seff =
∫ �/s

0
φ∗(k)k2φ(k)

ddk

(2π)d

+r0

∫ �/s

0
φ∗(k)φ(k) ddk

(2π)d
+

∫ �/s

0
φ∗(k)φ(k) ddk

(2π)d

(
u0

∫ �

�/s

ddk3

(2π)d
1

k2
3+ r0

)

+ u0

2!2!
∫

k<�/s
φ∗(k4)φ

∗(k3)φ(k2)φ(k1)

3∏
i=1

ddki

(2π)d
. (13.64)

Now for the long awaited rescaling to switch to new momenta k and new fields φ′:

k′ = sk, (13.65)

φ′(k′)= s−(
d
2+1)φ

(
k′

s

)
≡ ζ−1(s)φ

(
k′

s

)
. (13.66)

I invite you to show that

Seff =
∫ �

0
φ∗(k)k2φ(k)

ddk

(2π)d

+s2r0

∫ �

0
φ∗(k)φ(k) ddk

(2π)d
+ s2

∫ �

0
φ∗(k)φ(k) ddk

(2π)d

(
u0

∫ �

�/s

ddk3

(2π)d
1

k2
3+ r0

)

+s4−d u0

2!2!
∫

k<�
φ∗(k4)φ

∗(k3)φ(k2)φ(k1)

3∏
i=1

ddki

(2π)d
. (13.67)

Exercise 13.1.3 Carry out the rescaling of moment and fields and arrive at the preceding
equation. (Only the momenta that are arguments of φ need rescaling, not k3.)

Exercise 13.1.4 Suppose we begin with a quartic coupling u(k1, . . . ,k4) instead of a
constant u0. Expand it in powers of k2

i and show that the coefficients of the higher powers
are highly irrelevant near d= 4. This is analogous to what happened when we considered
r(k) instead of r0 in Exercise 13.1.1.
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It is common to parametrize s as

s= el. (13.68)

(Sometimes one sets s = et, and we will too, in a later chapter not connected to critical
phenomena. But here it would be inviting trouble since t is associated with deviation from
criticality.) In particular, for infinitesimal scale change we write

s= edl � 1+ dl. (13.69)

Look at the k3 integral in Eq. (13.67):

u0

∫ �

�/s

ddk3

(2π)d
1

k2
3+ r0

= u0

∫ �

�(1−dl)

kd−3
3 dk3Sd

(2π)d
1

k2
3+ r0

= u0
�d−3Sd�dl

(2π)d
1

�2+ r0
(13.70)

def= u0
A

1+ r0
dl, (13.71)

which defines the constant A whose precise expression will not matter. As explained in the
discussion following Eq. (13.18), we may set � = 1. (It is being used as the unit as we
renormalize, just the way the new lattice spacing was used as the unit of distance after a
block spin operation or decimation.)

Since we want to go to first order in r0 and u0 we may neglect the r0 in Eq. (13.71) and
approximate:

u0
A

1+ r0
� u0A. (13.72)

Adding this induced quadratic term to the one from tree level, rescaling the momenta
and fields, we find the following quadratic term:

(1+ 2dl)
∫ �

0
φ∗(k)φ(k)(r0+Au0dl)

ddk

(2π)d
def=

∫ �

0
r0(dl)φ∗(k)φ(k) ddk

(2π)d
, (13.73)

from which we deduce that

r0(dl)= (1+ 2dl)(r0+Au0dl) (13.74)
dr0

dl
= 2r0+Au0. (13.75)

Now for the u0 term in Eq. (13.66). We are working to first order in r0 and u0. Since the
tree-level term for u0 is already first order, we stop with

u0(dl)= u0s(4−d) = u0(1+ (4− d)dl), (13.76)

  



236 Renormalization Group for the φ4 Model

and conclude that

du0

dl
= (4− d)u0. (13.77)

Here are our final flow equations and β-functions:

βr = dr0

dl
= 2r0+Au0, (13.78)

βu = du0

dl
= (4− d)u0. (13.79)

These flow equations have only one fixed point, the Gaussian fixed point at the origin:

K∗ = (r∗0 = 0,u∗0 = 0). (13.80)

Near the fixed point a coupling Kα = K∗α + δKα flows as follows:

dKα
dl
= βα(K∗ + δK)= 0+ ∂βa

∂Kβ

∣∣∣∣∗ (Kβ −K∗β), (13.81)

dδKα
dl
= ∂βa

∂Kβ

∣∣∣∣∗ δKβ , where (13.82)

δKa = Kα −K∗α . (13.83)

In our problem where K∗ = (0,0), δKa = Kα . That is, δr0 = r0 and δu0 = u0. Starting
with Eqs. (13.78) and (13.79), and taking partial derivatives with respect to r0 and u0, we
arrive at ( dr0

dl
du0
dl

)
=

(
2 A
0 (4− d)

)(
r0

u0

)
. (13.84)

The 2× 2 matrix is not Hermitian and for good reason. The 0 in the lower left reflects the
fact that r0 does not generate any u0, while the non-zero element A in the upper right says
that u0 generates some r0.

Because the lower-left element vanishes, the relevant and irrelevant eigenvalues are the
diagonal entries themselves:

ad= 2 (or ν = 1
2 ), ωd= 4− d, (13.85)

in the notation of Eqs. (12.143)–(12.145).
Even though the flow got more complicated by the introduction of the irrelevant term,

the relevant exponent did not get modified. The asymmetric matrix has distinct left and
right eigenvectors. The right eigenvectors, which we have been using all along, are given,
in the notation of Section 12.4, by

|a〉 =
(

1
0

)
, |ω〉 =

( − A
d−2
1

)
. (13.86)
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In terms of canonical operators, the eigenvectors correspond to

|a〉 = 1 ·φ2+ 0 ·φ4, (13.87)

|ω〉 = − A

d− 2
φ2+ 1 ·φ4. (13.88)

Under the action of T:

T|a〉 = s2|a〉, (13.89)

T|ω〉 = sε|ω〉, (13.90)

ε = 4− d, (13.91)

where I have introduced the all-important parameter ε = 4− d.
If we bring in the magnetic field, we have another eigenvector:

T|b〉 = s1+ d
2 |b〉. (13.92)

This result is deduced as follows:

hφ(0)= hφ′(0/s)s1+ d
2 (from Eq. (13.66)) (13.93)

≡ hsφ
′(0). (13.94)

So the Gaussian fixed point always has two relevant eigenvalues associated with
temperature and magnetic field. The third eigenvalue ωd = 4− d = |ε| is irrelevant for
d > 4 and relevant for d < 4. It follows that for d < 4, the Gaussian fixed point does not
describe the Ising class which can be driven to criticality by tuning just two parameters:
h= 0, t= 0. It does describe critical phenomena with three relevant directions, but we will
not go there. So, with one brief exception, we will study the Gaussian fixed point only for
d> 4.

13.2 Gaussian Model Exponents for d> 4, ε = 4 − d = −|ε|
Figure 13.2 depicts the situation for d > 4 in the (r0,u0) plane, where r0 is the coefficient
of φ2 and u0 that of φ4. The magnetic field is associated with a coordinate h and an
eigenvector coming out of the page.

To attain criticality, we must first set h= 0. Next, in the (r0,u0) plane we need to tune
just one parameter to hit the critical surface, the line

r0+ Au0

d− 2
= 0, (13.95)

which just follows the irrelevant eigenvector flowing into the fixed point K∗ = (0,0).
Equation 13.95 says that if we start with a non-zero u0 we must tune r0 to be − Au0

d−2 to
be critical.
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• Find the effect of an RG by scale factor s:

|a〉→ T|a〉 = s2|a〉, (13.103)

|ω〉→ T|ω〉 = s−|ε||ω〉. (13.104)

• Find the renormalized action in the canonical basis of φ2 and φ4.

The result of this exercise is that the action evolves as follows:

r0φ
2+ u0φ

4→
[(

r0+ Au0

d− 2

)
s2− Au0

d− 2
s−|ε|

]
φ2+ u0s−εφ4. (13.105)

Exercise 13.2.1 Derive Eq. (13.105).

Exercise 13.2.2 Show that the initial point (r0= 0, u0= 1)= |2〉 does not flow to the fixed
point even though u0 is termed irrelevant. Do this by writing the initial state in terms of |a〉
and |ω〉.

As s→∞, we may drop the s−|ε| part compared to the s2 part in the first term and
identify

t=
(

r0+ Au0

d− 2

)
. (13.106)

As expected, when t = 0 we lie on the critical line. The second term has the scaling form
already and u0 plays the role of g, the irrelevant coupling. But remember this: u0 being
irrelevant does not mean that if we add a tiny bit of it, the action will flow to the fixed
point. Instead, u0 will generate some r0 and the final point will run off along the |a〉 axis,
as discussed in Exercise 13.2.2.

To find the other exponents we need to begin with f , the free energy per unit volume,

f =− lnZ

Volume
, (13.107)

and take various derivatives. Now the RG, in getting rid of fast variables, does not keep
track of their contribution to f . These were the lnZ0(fast) factors which were dropped
along the way as unimportant for the averages of the slow modes. Fortunately, these
contributions were analytic in all the parameters, coming as they did from fast modes.
What we want is fs, the singular part of the free energy, which is controlled by the yet to be
integrated soft modes near k= 0. This remains unaffected as we eliminate modes with one
trivial modification: due to the change in scale that accompanies the RG, unit volume after
RG corresponds to volume sd before RG. Consequently, the free energy per unit volume
behaves as follows in d dimensions:

fs(t,h,u0)= s−dfs(ts
2,hs1+ 1

2 d,u0s4−d+·· ·), (13.108)

where the ellipsis refers to even more irrelevant couplings like w0(φ
∗φ)3, which can be

safely set to zero and ignored hereafter.
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Following the familiar route,

m(−|t|,h,u0)� ∂f

∂h

∣∣∣∣
h=0

(13.109)

= s1− 1
2 dm(−|t|s2,0,u0s4−d) (13.110)

= |t|(− 1
2 )(1− 1

2 d)m(−1,0,u0t(d−4)/2) (13.111)

= |t|(− 1
2 )(1− 1

2 d)m(−1,0,0) when t→ 0, (13.112)

β = d− 2

4
. (13.113)

Consider the arguments of m in Eq. (13.112). Starting with a small negative t = −|t|
(required for non-zero m) I have renormalized to a point where it has grown to a robust
value of −1. The middle argument h = 0 once the h derivative has been taken. Finally, I
have set u0s = u0|t|(d−4)/2 = 0 in the limit t→ 0.

Taking another h derivative,

χ(t,0,u0)= t−1χ(1,0,u0t(d−4)/2)� t−1χ(1,0,0), i.e., (13.114)

γ = 1. (13.115)

(Unlike m, which exists only for t< 0, χ and hence γ can be computed in the t> 0 region.
Thus we can let t grow under RG to +1.)

To find CV , we take two derivatives of f with respect to t and find, as usual,

α = 2− 1

2
d. (13.116)

Finally, to find δ we begin with Eq. (13.108), take an h-derivative, and then set t= 0 to
obtain

m(0,h,u0)� ∂fs
∂h

∣∣∣∣
t=0
= s1− 1

2 dm(0,hs1+ 1
2 d,u0s4−d) (13.117)

= h
d−2
d+2 m(0,1,u0h(d−4)/(1+ 1

2 d)) (13.118)

= h
d−2
d+2 m(0,1,0) when h→ 0, (13.119)

δ = d+ 2

d− 2
. (13.120)

Table 13.1 compares the preceding exponents of the Gaussian model for d> 4 to Landau
theory.

The exponents β and δ agree only at d= 4 but not above. So which one is right? It turns
out it is Landau’s. Let me show you what was wrong with the way these two Gaussian
exponents were derived.

Look at the passage from Eq. (13.111) to Eq. (13.112) for m. Using the RG scaling, we
arrived at

m(−|t|,h= 0,u0)= |t| d−2
4 m(−1,0,u0|t|(d−4)/2), (13.121)
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Table 13.1 Gaussian model for
d> 4 versus Landau theory.

Exponent Landau Gaussian d> 4

α jump 4−d
2 < 0

β 1
2

d−2
4

γ 1 1

δ 3 d+2
d−2

ν 1
2

1
2

η 0 0

which relates the magnetization in the critical region with a tiny negative t to its value at
a point far from criticality, where t had been renormalized to −1, where fluctuations are
negligible, and where we can use Landau’s derivation with impunity. Landau’s analysis
gives, in the magnetized phase,

m(−|r|,0,u)�
√ |r|

u
. (13.122)

Applying this general result to our case,

m(−1,0,u0|t|(d−4)/2)�
√

1

u0|t|(d−4)/2
� |t|− d−4

4 , (13.123)

and this means we cannot simply set u0|t|(d−4)/2 to zero as t→ 0, because it enters the
denominator in the expression for m computed far from the critical point. Thus, m(−1,0,0)
is not some ignorable constant prefactor, but a factor with a divergent t dependence.
Incorporating this singularity from Eq. (13.123) into Eq. (13.121), we are led to

m(−|t|,h= 0,u0)= |t| d−2
4 |t|− d−4

4 � |t| 12 , (13.124)

which is Landau’s result.
So the error was in setting the irrelevant variable to 0 when it appeared in the

denominator of the formula for m in the region far from criticality. For this reason, u0 is
called a dangerous irrelevant variable. A dangerous irrelevant variable is one which cannot
be blindly set to zero even if it renormalizes to 0 far from the critical region. The singularity
it produces must be incorporated with care in ascertaining the true critical behavior.
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Likewise, given Landau’s answer far from criticality,

m(0,h,u)�
[

h

u

]1/3

, (13.125)

the derivation of δ must be modified as follows:

m(0,h,u0)� ∂fs
∂h

∣∣∣∣
t=0

(13.126)

= s1− 1
2 dm(0,hs1+ 1

2 d,u0s4−d) (13.127)

= h
d−2
d+2 m(0,1,u0h(d−4)/(1+ 1

2 d)) (13.128)

= h
d−2
d+2

(
1

u0h(d−4)/(1+ 1
2 d)

)1/3

, (13.129)

= h
1
3 (13.130)

δ = 3. (13.131)

Now for why Landau theory works for d > 4 even though it ignores fluctuations about
the minimum of the action. These fluctuations are computed perturbatively in u0. For
d > 4 these correction terms are given by convergent integrals. They do not modify the
singularities of the theory at u0 = 0.

Conversely, perturbation theory in u0 fails in d< 4 near criticality no matter how small
u0 is. The true expansion parameter that characterizes the Feynman graph expansion ends

up being u0r
1
2 (d−4)
0 and not u0. Thus, no matter how small u0 is, the corrections due to it

will blow up as we approach criticality.
One can anticipate this on dimensional grounds: since r0 always has dimension 2 and

u0 has dimension 4− d in momentum units, the dimensionless combination that describes

interaction strength is u0r
1
2 (d−4)
0 .

13.3 Wilson–Fisher Fixed Point d< 4

If d < 4, both directions become relevant at the Gaussian fixed point. (We have set h= 0.)
It is totally unstable. Two parameters, namely r0 and u0, have to be tuned to hit criticality.
This does not correspond to any Ising-like transition. This fixed point will be of interest
later on, when we consider renormalization of quantum field theories, but for now let us
move on to a fixed point in d< 4 that has only one relevant eigenvalue and describes Ising
and Ising-like transitions.

Here is the trick due to Wilson and Fisher [3] for finding and describing it perturbatively
in the small parameter

ε = 4− d. (13.132)
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Their logic is that if mean-field theory works at d = 4, it should work near d = 4 with
small controllable fluctuations. But this requires giving a meaning to the calculation for
continuous d. As mentioned earlier, we just need to deal with the measure ddk. The idea is
to compute the exponents as series in ε and then set ε= 1, hoping to get reliable results for
d= 3. Here we consider just the terms to order ε.

First for the renormalization of r0. We already know that

dr0

dl
= 2r0+ u0A

1+ r0
. (13.133)

The denominator is just k2+ r0 when k=�= 1.
We already have part of the flow for u0 from Eq. (13.79):

du0

dl
= (d− 4)u0+O(u2

0)= εu0+O(u2
0). (13.134)

We need the O(u2
0) term to find the fixed point u to order ε. This term describes how u0

renormalizes itself to order u2
0.

We have to take two powers of the quartic interaction, each with 16 possible monomials,
and perform the averages we need to get what we want: a term of the form

−
∫
φ∗s (k4)φ

∗
s (k3)φs(k2)φs(k1)u(4321), (13.135)

which can be added on to the existing quartic term to renormalize it.
Look at Figure 13.3. Part (a) shows a contribution in which the two slow fields

at the left vertex are part of the quartic term generated, and the two fast ones are
averaged with their counterparts in the right vertex. Part (b) is identical except for
the way the external momenta are attached to the vertices. Part (c) has a factor of
1
2 to compensate for the fact that the vertical internal lines are both particles whose
exchange does not produce a new contribution, in contrast to the internal lines in (a)
and (b) which describe particle–antiparticle pairs. Part (d) describes a disconnected
diagram which does not contribute to the flow and in fact cancels in the cumulant
expansion.

Since we are looking only for the change in the marginal coupling u0 = u(0,0,0,0), we
may assume the slow fields are all at k= 0. With no momentum flowing into the loops, all
propagators have the same momentum k = �. All diagrams make the same contribution
except for the 1

2 in Figure 13.3(c).
You have three choices here. You can accept what I say next, or go through the 256 terms

and collect the relevant pieces, or use Feynman diagrams which automate the process. For
those of you who are interested, I show at the end of this section how the following result,
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Table 13.2 The ε expansion versus others (# denotes numerical
results).

Exponent Landau Ising (O(ε)) Ising (#) U(1)

α jump ε
6 = 0.17 0.110 ε

10

β 1
2

1
2 − ε

6 = 0.33 0.326 1
2 − 3ε

20

γ 1 1+ ε
6 = 1.17 1.24 1+ ε

5

δ 3 3+ ε = 4 4.79 3+ ε

ν 1
2

1
2 + ε

12 = 0.58 0.630 1
2 + ε

5

η 0 O(ε2) 0.036 O(ε2)

The result is:

ν = 1

2− 2
6ε
= 1

2
+ ε

12
= 0.58 for d= 3. (13.147)

Now for the other exponents at d= 4− ε. The scaling of h is still

hs = hs1+ 1
2 d (13.148)

for real and complex fields because the field rescaling needed to obtain a fixed point action
has not been altered to order ε: the coefficient of the k2 term receives no corrections to
order ε. The other exponents then follow from the usual analysis. Only the deviation δu0

from the fixed point is irrelevant and flows to 0, but the fixed point itself is not at u0 = 0.
So u0 is not dangerous and the extraction of exponents has no pitfalls. Table 13.2 compares
the Ising exponents to order ε with Landau theory and the best numerically known answers
in d= 3. I also show the U(1) answers to O(ε).

Observe from the table that every correction to the Landau exponents is in the right
direction, toward the numerical answers. The exponents obey α+2β+γ = 2, as is assured
by the scaling arguments used in their derivation.

At higher orders in ε one faces two problems. The first is that the ε expansion is
asymptotic: it does not represent a convergent series; beyond some point, agreement will
worsen and fancy resummation techniques will have to be invoked. The second is that
the Wilson approach gets very complicated to the next order. We need to include more
operators (like (φ∗φ)3). The kinematics can get messy. Consider, for example, the one-loop
diagrams in Figure 13.3. The momenta in the loop have to be limited to a narrow sliver of
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the one-loop correction to the coupling u and are given by

u′0 = u0− u2
0

[∫ �

0

d4k

(2π)4
1

(k2+ r0)(|k+k1−k3|2+ r0)

+
∫ �

0

d4k

(2π)4
1

(k2+ r0)(|k+k1−k4|2+ r0)

+1

2

∫ �

0

d4k

(2π)4
1

(k2+ r0)(|−k+k1+k2|2+ r0)

]
. (13.150)

The field theory diagrams agree on multiplicity and topology with the Wilsonian ones,
but differ as follows:

• The loop momenta go from 0 to �.
• The external momenta have some general values k1, . . . ,k4.

We can borrow the corresponding integrals for the WF calculation if we set all external
momenta to 0, set k = � = 1 in every loop, and multiply by dk = dl to represent the
integration over an infinitesimal shell of thickness dl at the cut-off. Finally, in d= 4−ε we
must rescale the coupling by 1+ εdl, as in Eq. (13.136), because it is dimensionful. With
these values, and S4 = 2π2, all three loops contribute an equal amount

− u2
0dl

8π2(1+ r0)2
, (13.151)

which we then multiply by 5
2 to account for the three diagrams, the last of which contributes

with a relative size of 1
2 . As an aside, we note that the constant A= 1

8π2 .

13.4 Renormalization Group at d = 4

The case of d= 4 is very instructive. (Remember that d is the number of spatial dimensions
and usually d= 3. However, as described in [4–6], certain systems in d= 3 have low-energy
propagators that resemble those from d= 4 in the infrared. The following analysis applies
to them.)

u′0 = u0− 5u2
0

2

∫
d�

k3dkd�

(2π)4k4
, (13.152)

du0

dl
=− 5u2

0

16π2
, (13.153)

where I have again used the fact that the area of a unit sphere in d = 4 is S4 = 2π2. To
one-loop accuracy we have the following flow:

dr0

dl
= 2r0+ au0, (13.154)

du0

dl
=−bu2

0, (13.155)

where a and b are positive constants whose precise values will not matter.
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We shall now analyze these equations. First, besides the Gaussian fixed point at the
origin, there are no other points where both derivatives vanish. Next, the equation for u0 is
readily integrated to give

u0(l)= u0(0)

1+ bu0(0)l
. (13.156)

This means that if we start with a positive coupling u0(0) at � = �0 and renormalize to
� = �0e−l, the effective coupling renormalizes to zero as l→∞. One says that u0 is
marginally irrelevant. In the present case it vanishes as follows as l→∞:

u(t) lim
t→∞

1

bl
. (13.157)

This statement needs to be understood properly. In particular, it does not mean that
if we add a small positive u0 to the Gaussian fixed point, we will renormalize back to
the Gaussian fixed point. This is because the small u0 will generate an r0, and that will
quickly grow under renormalization. What is true is that ultimately u0 will decrease to
zero, but r0 can be large. To flow to the Gaussian fixed point, we must start with a
particular combination of r0 and u0 which describes the critical surface. All this comes
out of Eq. (13.154) for r0, which is integrated to give

r0(l)= e2l

[
r0(0)+

∫ l

0
e−2l′ au0(0)

1+ bu0(0)l′
dl′

]
. (13.158)

Let us consider large l. Typically, r0 will flow to infinity exponentially fast due to the
exponential prefactor, unless we choose r0 such that the object in brackets vanishes as
l→∞:

r0(0)+
∫ ∞

0
e−2l′ au0(0)

1+ bu0(0)l′
dl′ = 0. (13.159)

If we introduce this relation into Eq. (13.158), we find that

r0(l)= e2l
[
−

∫ ∞
l

e−2l′ au0(0)

1+ bu0(0)l′
dl′

]
�− a

2bl
. (13.160)

Combined with the earlier result Eq. (13.157), we find, for large l,

r0(l) lim
l→∞−

a

2bl
, (13.161)

u0(l) lim
l→∞

1

bl
, (13.162)

which defines the critical surface (a line) in the r0–u0 plane:

r0(l)=−au0(l)

2
. (13.163)

This flow into the fixed point at d = 4 resembles the flow in d > 4 depicted in
Figure 13.2, except that the approach to the fixed point is logarithmic and not power law.
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Look at Eq. (13.156). It tells us that in the deep infrared, the coupling actually vanishes
as 1/l, and that in the large-l region we can make reliable weak coupling calculations. This
is, however, thanks to the RG. In simple perturbation theory, we would have found the
series

u0(l)= u0(0)− u2
0bl+O(l2) (13.164)

with ever increasing terms as l→∞. The RG sums up the series for us [Eq. (13.156)] and
displays how the coupling flows to 0 in the infrared.
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Two Views of Renormalization

Here I discuss the relationship between two approaches to renormalization: the older one
based on removing infinities in the quest for field theories in the continuum, and the more
modern one due to Wilson based on obtaining effective theories. My focus will be on a few
central questions. No elaborate calculations will be done.

14.1 Review of RG in Critical Phenomena

Let us recall the problem of critical phenomena and its resolution by the RG. Suppose we
have some model on a lattice with some parameters, like K1, K2, . . . of the Ising model.
At very low and very high temperatures (K→∞ or K→ 0) we can employ perturbative
methods like the low-temperature or high-temperature expansions to compute correlation
functions. These series are predicated on the smooth change of physics as we move away
from these extreme end points. By definition, these methods will fail at the critical point
(and show signs of failing as we approach it) because there is a singular change of phase.
One signature of trouble is the diverging correlation length ξ . The RG beats the problem
by trading the original system near the critical point for one that is comfortably away from
it (and where the series work) and things like ξ can be computed. The RG then provides a
dictionary for translating quantities of original interest in terms of new ones. For example,

ξ(r0)= 2Nξ(rN), (14.1)

where r0 � t is the deviation from criticality, N is the number of factor-of-2 RG
transformations performed, and rN the coupling that r0 evolves into. At every step,

r0→ r02ad = r021/ν . (14.2)

We keep renormalizing until rN has grown to a safe value far from criticality, say

rN = r02N/ν = 1, that is (14.3)

2N = r−ν0 . (14.4)

251
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Then, from Eq. (14.1),

ξ(r0)= r−ν0 ξ(1). (14.5)

The divergence in ξ is translated into the divergence in N, the number of steps needed
to go from r0 to rN = 1 as r0 approaches the critical value of 0.

In terms of the continuous scale s (which replaces 2N), these relations take the form

ξ(r0)= sξ(rs), (14.6)

rs = r0s1/ν . (14.7)

Typically one finds some approximate flow equations, their fixed points K∗, the linearized
flow near K∗, and, eventually, the exponents.

14.2 The Problem of Quantum Field Theory

Consider the field theory with action (with c= 1= h̄)

S=
∫ [

1

2
(∇φ(x))2+ 1

2
m2

0φ
2(x)+ λ0

4! φ
4(x)

]
d4x (14.8)

= S0+ SI, (14.9)

where S0 is the quadratic part. I have chosen d = 4, which is relevant to particle physics
and serves to illustrate the main points, and a real scalar field to simplify the discussion.
The parameters m0 and λ0 are to be determined by computing some measurable quantities
and comparing to experiment.

To this end, we ask what is typically computed, how it is computed, and what
information it contains.

Consider the two-point correlation function

G(x)= 〈φ(x)φ(0)〉 (14.10)

=
∫

[Dφ]φ(x)φ(0)e−S∫
[Dφ]e−S

. (14.11)

First, let us assume that λ0 = 0. Doing the Gaussian functional integral we readily find

G(r)� e−m0r

r2
. (14.12)

How do we determine m0 from experiment? In the context of particle physics, m0 would
be the particle mass, measured the way masses are measured. If, instead, the φ4 theory
were being used to describe spins on a lattice of spacing a, we would first measure
the dimensionless correlation length ξ (in lattice units) from the exponential decay of
correlations and relate it to m0 by the equation

m0 = 1

a · ξ . (14.13)
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Sometimes I will discuss correlations of four φ’s. They will also be called G, but will
be shown with four arguments. If not, assume we are discussing the two-point function.

In momentum space we would consider the Fourier transform

〈φ(k1)φ(k2)〉 = (2π)4δ4(k1− k2)G(k), where (14.14)

G(k)=G0(k)= 1

k2+m2
0

; (14.15)

the subscript on G0 reminds us that we are working with a free-field theory. Correlations
with more fields can be computed as products of two-point functions G0(k) using Wick’s
theorem. If this explains the data, we are done.

14.3 Perturbation Series in λ0: Mass Divergence

Let us say the λ0 = 0 theory does not explain the data. For example, the particles could be
found to scatter. The λ0 = 0 theory cannot describe that. So we toss in a λ0 and proceed to
calculate correlation functions, and fit the results to the data to determine m0 and λ0.

When λ0 �= 0, we resort to perturbation theory. We bring the λ0φ
4 term in S downstairs

as a power series in λ0 and do the averages term-by-term using Wick’s theorem. To order
λ0, we find

G(x)= 〈φ(x)φ(0)〉 (14.16)

=
∫

[Dφ]φ(x)φ(0)e−S0(φ)
[
1− λ0

4!
∫
φ4(y)d4y

]
∫

[Dφ]e−S0(φ)
[
1− λ0

4!
∫
φ4(y)d4y

] . (14.17)

In the denominator, we pair the four φ(y)’s two-by-two to obtain

denominator= 1− λ0

8

∫
G2

0(0)d
4y. (14.18)

In the numerator, one option is to pair φ(x) and φ(0), which are being averaged, and pair

the fields inside the y integral with each other. This will give G0(x) ·
(

1− λ0
8

∫
G2

0(0)d
4y

)
.

The factor in parentheses will get canceled by the normalizing partition function in the
denominator. This happens in general: any contribution in which the fields being averaged
do not mingle with the ones in the interaction, the so-called disconnected terms, may be
dropped.

This leaves us with contributions where φ(x) and φ(0) are paired with the φ(y)’s. The
result is, to order λ0,

G(x)=G0(x)− 1

2
λ0

∫
G0(x− y)G0(y− y)G0(y− 0)d4y. (14.19)

Since the second term is of order λ0, we may set the normalizing denominator 1 −
λ0
8

∫
G2

0(0)d
4y to 1.
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G(k) = + +

k’

k
kk

(a) (b)= λ0

Figure 14.1 (a) G0(k) = G(k) in free-field theory. (b) One-loop correction to m2
0. The lines with

arrows denote the free propagator G0(k)= 1
k2+m2

0
.

In momentum space,

G(k)= 1

k2+m2
0

− 1

k2+m2
0

[
1

2

∫ ∞
0

λ0

k′2+m2
0

d4k′

(2π)4

]
︸ ︷︷ ︸

δm2
0

1

k2+m2
0

· · · (14.20)

This series is represented in Figure 14.1.
To this order in λ0 we may rewrite this as

G(k)= 1

k2+m2
0+ δm2

0

. (14.21)

We conclude that the mass squared in the interacting theory is

m2 =m2
0+ δm2

0. (14.22)

The next natural thing to do is compare the measured m2 to this result and find a relation
constraining m2

0 and λ0.
It is here we encounter the serious trouble with continuum field theory: δm2

0 is
quadratically divergent in the ultraviolet:

δm2
0 =

1

2

∫ ∞
0

λ0

k′2+m2
0

d4k′

(2π)4
. (14.23)

So no matter how small λ0 is, the change in mass δm2
0 is infinite. The infinity comes from

working in the continuum with no limit on the momenta in Fourier expansions. The theory
seems incapable of describing the experiment with a finite m, assuming m0 and λ0 are
finite.

Let us set this aside and compute the scattering amplitude, to compare it with experiment
to constrain m2

0 and λ0.

14.4 Scattering Amplitude and the �’s

We must clearly begin with the correlation of four fields, two each for the incoming and
outgoing particles. The momenta are positive flowing inwards and there is no difference
between particles and antiparticles.The correlation function G(k1, . . . ,k4) is depicted in
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Γ

k3 k4

k1 k2

Figure 14.2 The scattering amplitude � is a function of the particle momenta, all chosen to point
inwards. Their vector sum is zero.

Figure 14.2 and is defined as follows after pulling out the momentum-conserving δ

function:

〈φ(k1)φ(k2)φ(k3)φ(k4)〉 = (2π)4δ4(k1+ k2+ k3+ k4)G(k1, . . . ,k4).

(14.24)

To lowest order in λ0, we get, upon pairing the four external φ’s with the four φ’s in the
λ0φ

4 interaction,

G(k1, . . . ,k4)=G(k1)G(k2)G(k3)G(k4)λ0. (14.25)

However, G(k1, . . . ,k4) is not the scattering amplitude which we should square to get
the cross section. The four external propagators do not belong there. (In Minkowski space,
the propagators will diverge because k2 = m2.) The scattering amplitude �(k1, . . . ,k4) is
defined as follows:

G(k1, . . . ,k4)=G(k1)G(k2)G(k3)G(k4)�(k1, . . . ,k4). (14.26)

That is,

�(k1, . . . ,k4)=G−1(k1)G
−1(k2)G

−1(k3)G
−1(k4)G(k1, . . . ,k4). (14.27)

To lowest order,

�(k1, . . . ,k4)= λ0. (14.28)

Do we really need to bring in another function �(k1, . . . ,k4) if it is just G(k1, . . . ,k4)

with the four external legs chopped off? Actually, we could get by with just the
G(k1, . . . ,k4)’s, but in doing so would miss some important part of quantum field theory
(QFT). First, �(k1, . . . ,k4) is not alone, it is part of a family of functions, as numerous as
the G’s. That is, there are entities �(k1, . . . ,kn) for all n. They provide an alternate, equally
complete, description of the theory to the G’s, just like the Hamiltonian formalism is an
alternative to the Lagrangian formalism. They are better suited than the G(k1, . . . ,kn)’s
for discussing renormalization. And they are not just G(k1, . . . ,kn)’s with the external legs
amputated.
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In view of time and space considerations, I will digress briefly to answer just two
questions:

• Where do the �’s come from?
• What are the Feynman diagrams that contribute to them?

Consider the partition function Z(J) with a source:

Z(J)=
∫

[Dφ]e−Se
∫

J(x)φ(x)dx ≡ e−W(J). (14.29)

The generating functional W(J) yields Gc(x1, . . . ,xn) upon repeated differentiation by J(x),
where the subscript c stands for connected:

W(J)=−
∫

dx1 · · ·dxn

n! Gc(x1, . . . ,xn)J(x1) · · ·J(xn). (14.30)

In particular,

φ̄(x)≡ 〈φ(x)〉 = − ∂W
∂J(x)

. (14.31)

(It is understood here and elsewhere that the derivatives are taken at J = 0.) Taking one
more derivative gives

〈φ(x)φ(y)〉c =− ∂2W
∂J(x)∂J(y)

=Gc(x,y). (14.32)

Given this formalism, in which W(J) is a functional of J and φ̄ is its derivative, it is
natural to consider a Legendre transform to a functional �(φ̄) with J as its derivative. By
the familiar route one follows to go from the Lagrangian to the Hamiltonian or from the
energy to the free energy, we are led to

�(φ̄)=
∫

J(y)φ̄(y)dy+W(J). (14.33)

By the usual arguments,

∂�(φ̄)

∂φ̄(y)
= J(y). (14.34)

The Taylor expansion

�(φ̄)
def=

∫
dx1 · · ·dxn

n! �(x1, . . . ,xn)φ̄(x1) · · · φ̄(xn) (14.35)

defines the �’s with n arguments. A similar expansion in terms of φ̄(k) defines
�(k1, . . . ,kn).

Given this definition, and a lot of work, one can show that �(k1, . . . ,kn) will have the
following diagrammatic expansion:
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• Draw the connected diagrams that contribute to G(k1, . . . ,kn) with the same incoming
lines, except for those diagrams that can be split into two disjoint parts by cutting just one
internal line. For this reason the �’s are called 1PI or one-particle irreducible correlation
functions.

• Append a factor G−1(k) for every incoming particle of momentum k.

To get acquainted with this formalism, let us derive the relation between �(k) and G(k)
that it implies. Given that J(x) and J(y) are independent, it follows that

δ(x− y)= ∂J(x)

∂J(y)
(14.36)

= ∂2�

∂J(y)∂φ̄(x)
(14.37)

= ∂2�

∂φ̄(x)∂J(y)
(14.38)

=
∫

dz
∂2�

∂φ̄(x)∂φ̄(z)

∂φ̄(z)

∂J(y)
(14.39)

=−
∫

dz
∂2�

∂φ̄(x)∂φ̄(z)

∂2W
∂J(z)∂J(y)

(14.40)

=
∫

dy�(x,z)G(z,y), (14.41)

which leads to the very interesting result that the matrices � and G with elements �(x,z)
and G(z,y) are inverses:

� =G−1. (14.42)

This agrees with the rules given above for computing the two-point function �(k) from
G(k): If we take the two-point function G(k) and multiply by two inverse powers of G(k)
(one for each incoming line) we get �(k)=G−1(k).

Upon further differentiation with respect to φ̄(k), one can deduce the relation between
the G’s and �’s and the Feynman rules stated above.

14.4.1 Back to Coupling Constant Renormalization

Let us now return to the scattering amplitude �(k1, . . . ,k4). To lowest order in λ0,

�(k1, . . . ,k4)= λ0. (14.43)

It is |λ0|2 you must use to compute cross sections.
In general, �(k1, . . . ,k4) will depend on the external momenta. However, to this order in

λ0, we find � does not have any momentum dependence and coincides with the coupling
λ0 in the action.
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As we go to higher orders, �(0,0,0,0) will be represented by a power series in λ0.
We will then define �(0,0,0,0) as the coupling λ, not the λ0 in the action. This fixes the
interaction strength completely. I am not saying that the external momenta vanish in every
scattering event, but that in any one theory, given �(0,0,0,0), a unique �(k1, . . . ,k4) is
given by Feynman diagrams.

The trick of comparing the observed scattering rate to the one calculated from
Eq. (14.43) to extract λ0 will work only if λ0 is small and higher-order corrections are
negligible. Let us assume that λ0 is very small, just like in electrodynamics where the
analog of λ0 � 1

137 .
We will now consider scattering to order λ2

0, even though it is one order higher than
the correction to m2

0. The reason is that it is also given by a one-loop graph, as shown in
Figure 14.3, and the systematic way to organize perturbation theory is in the number of
loops. If we restore the 1

h̄ in front of the action, we will find (Exercise 14.4.1) that the

tree-level diagram, which is zeroth order in the loop expansion, is of order 1
h̄ and that each

additional loop brings in one more positive power of h̄. The loop expansion is therefore an
h̄ expansion. (During Christmas, we have a tree in our house but no wreath on the door,
making us Christians at tree level but not one-loop level.)

Exercise 14.4.1 Introduce h̄−1 in front of the action and see how this modifies G0 and λ0.
Look at the diagrams for G and � to one loop and see how the loop brings in an extra h̄.

The one-loop corrections to scattering are depicted in Figure 14.3. They correspond to
the following expression:

�(0,0,0,0)= λ0− 3λ2
0

∫ ∞
0

1

(k2+m2
0)

2

d4k

(2π)4
≡ λ0+ δλ0 ≡ λ. (14.44)

This defines the coupling λ to next order.

= + + 2 more

= λ0

Γ

k3 k4

k1 k2

k3 k4

k1 k2

k3

k1 k2

k4

k

k+k1+k3

Figure 14.3 One-loop correction to � and λ = �(0,0,0,0). Two more diagrams with external
momenta connected to the vertices differently are not shown. They make the same contributions
when external momenta vanish. The incoming arrows denote momenta and not propagators of that
momentum (which have been amputated).
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The factor of 3 comes from three loops with different routing of external momenta
to the interaction vertices. Since all external momenta vanish, the graphs make identical
contributions. Unfortunately, δλ0 is logarithmically divergent.

14.5 Perturbative Renormalization

How do we reconcile these infinities in mass and coupling with the fact that actual masses
and cross sections are finite? We employ the notion of renormalization.

First, we introduce a large momentum cut-off � in the loop integrals so that everything
is finite but �-dependent:

δm2
0(�)=

λ0

2

∫ �

0

1

k2+m2
0

d4k

(2π)4
, (14.45)

δλ0(�)=−3λ2
0

∫ �

0

1

(k2+m2
0)

2

d4k

(2π)4
. (14.46)

Then we identify the perturbatively corrected quantities with the measured ones. That is,
we say

m2 =m2
0(�)+ δm2

0(�) (14.47)

is the finite measured or renormalized mass, and that m2
0(�) is the bare mass, with an

�-dependence chosen to ensure that m2 equals the measured value. This means that we
must choose

m2
0(�)=m2− λ0

2

∫ �

0

1

k2+m2
0

d4k

(2π)4
(14.48)

=m2− λ
2

∫ �

0

1

k2+m2

d4k

(2π)4
, (14.49)

where I have replaced the bare mass and coupling by the physical mass and coupling with
errors of higher order.

Likewise, we must go back to Eq. (14.44) and choose

λ0(�)= λ+ 3λ2
0

∫ �

0

1

(k2+m2
0)

2

d4k

(2π)4
(14.50)

= λ+ 3λ2
∫ �

0

1

(k2+m2)2

d4k

(2π)4
, (14.51)

where I have replaced the bare mass squared by the physical mass squared and ł20 by λ2

with errors of higher order.
Equations (14.49) and 14.51 specify the requisite bare mass m2

0(λ,m,�) and bare
coupling λ0(λ,m,�) corresponding to the experimentally determined values of λ and m
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for any given �. If we choose the bare parameters as above, we will end up with physical
mass and coupling that are finite and independent of �, to this order.

What about the scattering amplitude for non-zero external momenta? What about its
divergences? We find that

�(k1, . . . ,k4)= λ0− ł20

[∫ �

0

d4k

(2π)4
1

(k2+m2
0)(|k+ k1+ k3|2+m2

0)

+ two more contributions

]
(14.52)

is logarithmically divergent as � → ∞. Don’t panic yet! We first replace m2
0 by m2

everywhere, due to the ł20 in front of the integral. Next, we use Eq. (14.51) to replace
the first λ0 by

λ0 = λ+ 3λ2
∫ �

0

1

(k2+m2)2

d4k

(2π)4
, (14.53)

and the ł20 in front of the integral by λ2 (with errors of higher order), to arrive at

�(k1, . . . ,k4)= λ+λ2
[∫ �

0

[
1

(k2+m2)(|k+ k1+ k3|2+m2)
− 1

(k2+m2)2

]
d4k

(2π)4

+ two more contributions

]
. (14.54)

I have divided the 3λ2 term in Eq. (14.53) into three equal parts and lumped them with the
three integrals in large square brackets.

The integrals are now convergent because as k→∞, the integrand in the diagram shown
goes as

(q2+ 2k · q)k3

k6
, (14.55)

where q = k1 + k3 is the external momentum flowing in. Because the k · q term does
not contribute due to rotational invariance, the integrand has lost two powers of k due
to renormalization. The other two diagrams are also finite for the same reason. In short,
once �(0,0,0,0) is rendered finite, so is �(k1, . . . ,k4).

The moral of the story is that, to one-loop order, the quantities considered so far are free
of divergences when written in terms of the renormalized mass and coupling.

14.6 Wavefunction Renormalization

However, at next order a new kind of trouble pops up that calls for more renormalization.
I will describe this in terms of

�(k)=G−1(k). (14.56)
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where c is some constant and I have introduced the field renormalization factor:

Z−
1
2

(
λ0,

�2

m2
0

)
=

(
1+ cł20 ln

�2

m2
0

) 1
2

. (14.62)

Because Z−1 diverges, the k2 term in �(k) now has a divergent coefficient.
Let us first handle this divergence and then interpret our actions. We begin with

�(k)= Z−1

(
λ0,

�2

m2
0

)
k2+ k-independent term m2

1+O(k4). (14.63)

Multiplying both sides by Z, we arrive at

Z�(k)= k2+Zm2
1+O(k4)≡ k2+m2+O(k4), (14.64)

where we have finally defined the quantity m2 that is identified with the experimentally
measured renormalized mass to this order.

The renormalized function

�R = Z� (14.65)

now has a finite value and finite derivative at k2 = 0:

�R(0)=m2, (14.66)

d�R(k2)

dk2

∣∣∣∣
k2=0
= 1. (14.67)

What does � → �R imply for G? Since � = G−1, it follows that the renormalized
propagator

GR(k)= Z−1

(
λ0,

�2

m2
0

)
G(k) (14.68)

is divergence free. As Z is independent of momentum we may also assert that the Fourier
transform to real space given by

GR(r)= Z−1

(
λ0,

�2

m2
0

)
G(r) (14.69)

is also divergence free. But

G(r)= 〈φ(r)φ(0)〉, (14.70)

which means that

GR(r)= 〈Z− 1
2φ(r)Z−

1
2φ(0)〉 ≡ 〈φR(r)φR(0)〉 (14.71)
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is divergence free. Above, we have defined a renormalized field

φR = Z−
1
2φ (14.72)

in coordinate or momentum space, which has divergence-free correlations when everything
is expressed in terms of renormalized mass and coupling (except for the unavoidable
momentum-conservation δ-function in front of G(k)). One refers to Eq. (14.72) as field
renormalization.

Several questions arise at this point:

• Since our original task was to compute correlations of φ, what good is it to have
correlations of φR, even if the latter are finite?

• Renormalization looks like a Ponzi scheme, wherein we keep shoving problems to higher
and higher orders. How many more new infinities will arise as we go to higher orders
in λ0 and k2 and consider correlation functions of more than two fields? Will all the
infinities be removed by simply renormalizing the mass, coupling, and field?

As to the first point, it turns out that the overall scale of φ does not affect any physical
quantity: one will infer the same particle masses and physical scattering matrix elements
before and after rescaling. This is not obvious, and I will not try to show that here.

As for the second set of points, it is the central claim of renormalization theory that
no more quantities need to be renormalized (though the amount of renormalization will
depend on the order of perturbation theory), and that the renormalized correlation function
of rescaled fields

φR = Z−
1
2φ, (14.73)

expressed in terms of the renormalized mass and coupling,

GR(k1, . . . ,kM ,m,λ)= Z−M/2G(k1, . . . ,kM ,m0,λ0,�), (14.74)

are finite and independent of � as �→∞.
(New divergences arise if the spatial arguments of any two or more φ’s in GR coincide

to form the operators like φ2. We will not discuss that here.)
The proof of renormalizability is very complicated. To anyone who has done the

calculations, it is awesome to behold the cancellation of infinities in higher-loop diagrams
as we rewrite everything in terms of quantities renormalized at lower orders. It seems
miraculous and mysterious.

While all this is true for the theory we just discussed, φ4 interaction in d= 4, referred to
as φ4

4 , there are also non-renormalizable theories. For example, if we add a φ6 interaction
in d = 4, the infinities that arise cannot be fixed by renormalizing any finite number of
parameters. Here it should be borne in mind that in quantum field theory one adds this
term with a coefficient, λ6 = w6/μ

2, where μ is some fixed mass (say 1 GeV) introduced
to define a dimensionless w6. In the post-Wilson era one adds the φ6 term with coupling
λ6 =w6/�

2, which is more natural. Its impact is benign and will be explained later.
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What is the diagnostic for renormalizability? The answer is that any interaction that
requires a coupling constant with inverse dimensions of mass is non-renormalizable. The
couplings of φ2 and φ4 have dimensions m2 and m0, while a φ6 coupling would have
dimension m−2 in d = 4. These dimensions are established (in units of h̄ = 1 = c) by
demanding that the kinetic term

∫
(∇φ)2ddx be dimensionless and using that to fix the

dimension of φ as

[φ(x)]=
(

d

2
− 1

)
. (14.75)

I invite you to show that

[λ]= 4− d, (14.76)

which means that λ is marginal in d= 4 and renormalizable in d< 4. Likewise, try showing
that λ6, the coupling for the φ6 interaction, has dimension

[λ6]= 6− 2d, (14.77)

which makes it non-renormalizable in d= 4 but renormalizable for d ≤ 3.
You must have noticed the trend: The renormalizable couplings are the ones which are

relevant or marginal at the Gaussian fixed point.
That the Gaussian fixed point plays a central role is to be expected in all old treatments

of QFT because they were based on perturbation theory about the free-field theory. These
topics are treated nicely in many places; a sample [1–6] is given at the end of this
chapter. The relation between relevance and renormalizability can be readily understood
in Wilson’s approach to renormalization, which I will now describe. His approach gives
a very transparent non-perturbative explanation of the “miracle” of canceling infinities in
renormalizable theories.

14.7 Wilson’s Approach to Renormalizing QFT

Compared to the diagrammatic and perturbative proof of renormalization in QFT, Wilson’s
approach [7, 8] is simplicity itself.

Recall our goal: to define a QFT in the continuum with the following properties:

• All quantities of physical significance – correlation functions, masses, scattering
amplitudes, and so on – must be finite.

• There should be no reference in the final theory to a lattice spacing a or an ultraviolet
momentum cut-off �.

Of course, at intermediate stages a cut-off will be needed and the continuum theory will be
defined as the �→∞ limit of such cut-off theories.

Wilson’s approach is structured around a fixed point of the RG. Every relevant direction
will yield an independent parameter.
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It is assumed that we know the eigenvectors and eigenvalues of the flow near this fixed
point.

Even if we cannot find such fixed points explicitly, the RG provides a framework for
understanding renormalizability, just as it provides a framework for understanding critical
phenomena and demystifying universality in terms of flows, fixed points, scaling operators,
and so on, even without explicit knowledge of these quantities.

Consider a scalar field theory. By assumption, we are given complete knowledge of
a fixed point action S∗ that lives in some infinite-dimensional space of dimensionless
couplings such as r0, u0, and so forth. The values of these couplings are what we previously
referred to as K∗. Let the fixed point have one relevant direction, labeled by a coordinate
t. As t increases from 0, the representative point moves from S∗ to S∗ + tSrel, where Srel is
the relevant perturbation, a particular combination of φ2,φ4, and so on. Once we go a finite
distance from S∗ the flow may not be along the direction of the relevant eigenvector at S∗,
but along its continuation, a curve called the renormalized trajectory (RT).

Let us say that our goal is to describe physics in the 1 GeV scale using a continuum
theory. (In terms of length, 1 GeV corresponds to roughly 1 fermi, a natural unit for nuclear
physics. More precisely, 1GeV ·1fermi� 5� 1 in units h̄= c= 1.) Although we limit our
interest to momenta within the cut-off of 1 GeV, we want the correlations to be exactly
those of an underlying theory with a cut-off that approaches infinity, a theory that knows
all about the extreme-short-distance physics. The information from very short distances is
not discarded, but encoded in the renormalized couplings that flow under the RG.

Notice the change in language: we are speaking of a very large cut-off �. We are
therefore using laboratory units in contrast to the Wilsonian language in which the cut-off is
always unity. (For example, when we performed decimation, the new lattice size a served as
the unit of length in terms of which the dimensionless correlation length ξ was measured.)

To make contact with QFT, we too will carry out the following discussion in fixed
laboratory units. In these units the allowed momenta will be reduced from a huge sphere of
radius �GeV to smaller and smaller spheres of radius �/s GeV. The surviving momenta
will range over smaller and smaller values, and they will be a small subset of the original
set k<�.

We have had this discussion about laboratory versus running units before in discussing
the continuum limit of a free-field theory. If we want the continuum correlation to fall by
1/e over a distance of 1 fermi, we fix the two points a fermi apart in the continuum and
overlay lattices of smaller and smaller sizes a. As a→ 0, the number of lattice sites within
this 1 fermi separation keeps growing and the dimensionless correlation length has to keep
growing at the same rate to keep the decay to 1/e.

So, we are not going to rescale momenta as modes are eliminated. How about the field?
In the Wilson approach the field gets rescaled even in free-field theory because k gets
rescaled to k′ = sk. We will not do that anymore. However, we will rescale by the factor Z
introduced in connection with the renormalized quantities �R and GR. This Z was needed
in perturbation theory to avert a blow-up of the k2 term in � due to the loop correction.
[Recall the appearance of Z in the two-loop diagram, Eq. (14.61)]. In the Wilsonian RG
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there will also be a correction to the k2 term from loop diagrams (now integrated over the
eliminated modes), and these will modify the coefficient of the k2 term. We will bring in a
Z to keep the coefficient of k2 fixed at 1. The reason is not to cancel divergences, for there
are none, but because the strength of the interaction is measured relative to the free-field
term. For example, in a φ4 theory if we rescale φ(x) by 5 this will boost the coefficients φ2

and (∇φ)2 by 25 and that of the quartic term by 625. But it is still the same theory. For this
reason, to compare apples to apples, one always rescales the k2 coefficient to unity, even if
there are no infinities.

Let us now begin the quest for the continuum theory.
Say we want a physical mass of 1 GeV or a correlation length of 1 fermi. First we pick

a point t0 on the RT where the dimensionless correlation length ξ0 = 20 = 1, as indicated
in Figure 14.5. We refer to the action at t0 as S(0).

No cut-off or lattice size has been associated with the point t0, since everything is
dimensionless in Wilson’s approach. All momenta are measured in units of the cut-off,
and the cut-off is unity at every stage in the RG. We now bring in laboratory units and
assign to t0 a momentum cut-off of �0 = 20 = 1 GeV.

What is the mass corresponding to this ξ0 in GeV? For this, we need to recall the
connection between ξ and m:

G(r)� e−mr = exp

[
− r

aξ

]
= exp

[
− r�

ξ

]
, (14.78)

which means that the mass is related to the cut-off and ξ as follows:

m= �
ξ

. (14.79)

S(N)

ξN=2N

ΛN=2N
ξ2=22

Λ2=22 ξ0=20

Λ0=20

S(0)

ξ3=23

Λ3=23

S*
tN

t3

ξ1=21

Λ1=21

t1
t2

t0

1 = mo = = m1 = . . . = mN =ξ0

Λ0

ξ1

Λ1

ξN

ΛN

Figure 14.5 Points on the renormalized trajectory emanating from the fixed point S∗. To end up at
the theory with cut-off �0 = 1 GeV and action S(0) after N RG steps of factor of 2 reduction of �,
we must begin with the point labeled N, cut-off �N = 2N GeV, ξN = 2N (dimensionless), and action
S(N). The sequence of points S(N), N→∞ defines the continuum limit.
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Thus, the mass corresponding to S(0) is

m0 = �0

ξ0
= 1GeV

1
= 1GeV. (14.80)

Imagine that we got to the point t0 by performing N RG steps of size 2, starting with the
point tN where ξN = 2N and�N = 2N GeV. At every stage, the dimensionful mass is 1 GeV:

mN = �N

ξN
= 1. (14.81)

Thus we have a sequence of actions, S(n) : n= 0,1, . . . ,N, defined on smaller and smaller
length scales or larger and larger momentum cut-offs, which produce the requisite physical
mass. Not only is the mass fixed, the complete interaction is fixed to be S(0). We have
reverse-engineered it so that the theory at 1 GeV stays fixed at S(0) while the underlying
theory is defined on a sequence of actions S(N) for which ξN = 2N , and cut-off 2N GeV,
with N→∞. We can make N as large as we like because ξ diverges as we approach S∗.

We have managed to renormalize the theory by providing for each cut-off 2N an action
S(tN)≡ S(N) that yields the theory S(0) at low energies. This is the continuum limit.

This discussion also makes it obvious how to obtain a theory with a cut-off of 2 GeV:
we just stop the RG one step earlier, at S(1).

We can be more explicit about the continuum limit by invoking our presumed
knowledge of ν. Near the fixed point we know that

ξ = t−ν . (14.82)

This means that

2N = t−νN (14.83)

tN = 2−N/ν , (14.84)

which specifies the bare coupling or action S(tN)≡ S(N) as a function of the cut-off �N =
2N and the critical exponent ν. Just to be explicit: the bare action for cut-off �= 2N GeV
is S= S∗ +2−N/νSrel, where Srel is the relevant eigenoperator (some linear combination of
φ2, φ4, etc.) that moves us along the RT starting at S∗.

We have managed to send the cut-off of the underlying theory to 2N GeV with N→∞
holding fixed the action S(0) for a theory with a cut-off of 1 GeV, but we need more. We
need to ensure that not only does the low-energy action have a limit S(0), as�N→∞, but
so do all the M-point correlation functions G(k1,k2, . . . ,kM) defined by

〈φ(k1)φ(k2) · · ·φ(kM)〉 = (2π)dδ
(∑

i

ki

)
G(k1,k2, . . . ,kM). (14.85)

Since we measure momentum in fixed laboratory units, the surviving momenta and
fields φ(k) in the �0 = 1 GeV theory are a subset of the momenta and fields in the
underlying �N = 2N GeV theory.
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This may suggest that

G(k1, . . . ,kM ,S(N))=G(k1, . . . ,kM ,S(0)). (14.86)

However, Eq. (14.86) is incorrect. The reason is that the fields that appear in S(0) are
different from the ones we began with in S(N), because we rescale the field to keep the
coefficient of the k2 term fixed in the presence of higher-loop corrections.

So, at every RG step we define a renormalized φR as follows:

φR(k)= Z−
1
2φ(k), (14.87)

and write S in terms of that field. If there are N steps in the RG the same equation would
hold, with Z being the product of the Z’s from each step. So, the fields entering S(0) are
rescaled versions of the original fields entering S(N).

This means that, for the M-point correlation,

G(k1, . . . ,kM ,S(N))= Z(N)
M
2 G(k1, . . . ,kM ,S(0)), (14.88)

where Z(N) is the net renormalization factor after N RG steps starting with cut-off 2N .
Look at the G(k1, . . . ,kM ,S(N)) on the left-hand side. This is the correlation function

of a theory with a growing cut-off. The coupling is chosen as a function of cut-off that
grows like 2N . If G is finite as N→∞, we have successfully renormalized. The equation
above expresses G as the product of two factors. The second factor is a correlation function
evaluated in a theory with action S(0) which remains fixed as N→∞ by construction. It
has a finite non-zero mass and a finite cut-off, and is thus free of ultraviolet and infrared
divergences. So we are good there. But, this need not be true of the Z-factor in front,
because it is the result of (product over) Z’s from N steps, with N→∞. Let us take the Z
factor to the left-hand side:

Z(N)−
M
2 G(k1, . . . ,kM ,S(N))=G(k1, . . . ,kM ,S(0)). (14.89)

The left-hand side is now finite as N→∞, namely G(k1, . . . ,kM ,S(0)). In other words, the
correlation functions of the renormalized fields are finite and cut-off independent as the
cut-off approaches∞. This is the continuum limit.

In this approach it is obvious how, by choosing just one coupling (the initial value
tN of the distance from the fixed point along the RT) as a function of the cut-off (� =
2N), we have an expression for finite correlation functions computed in terms of the finite
renormalized interaction S(0). Renormalizability is not a miracle if we start with an RG
fixed point with a relevant coupling (or couplings) and proceed as above.

14.7.1 Possible Concerns

You may have some objections or concerns at this point.
What about t < 0? Is there not a flow to the left of S∗? There is, and it defines another

continuum theory. In the magnetic case the two sides would correspond to the ordered
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and disordered phases. However, the rest of the discussion would be similar. (There are
some cases, like Yang–Mills theory, where the fixed point is at the origin and the region of
negative coupling is unphysical [9, 10].)

You may object that we have found a smooth limit for the correlation of the
renormalized fields, whereas our goal was to find the correlations of the original fields.
Have we not found a nice answer to the wrong question? No. As mentioned earlier (without
proof), the physical results of a field theory – masses, scattering amplitudes, and so on – are
unaffected by such a k- and x-independent rescaling of the fields. So what we have provided
in the end are finite answers to all physical questions pertaining to the low-energy physics
in the continuum.

Another very reasonable objection is that the preceding diagram and discussion hide one
important complexity. Even though the flow along the RT is one-dimensional, it takes place
in an infinite-dimensional space of all possible couplings. As we approach the fixed point
S∗ along the RT, we have to choose the couplings of an infinite number of terms like the
φ2, φ4, φ6, φ2(∇φ)2, and so on of the short-distance interaction. This seems impractical.
It also seems to have nothing to do with standard renormalization, where we vary one or
two couplings to banish cut-off dependence.

14.7.2 Renormalization with Only Relevant and Marginal Couplings

We resolve this by bringing in the irrelevant directions and seeing what they do to the
preceding analysis. Look at Figure 14.6.

Besides the RT, I show one irrelevant trajectory that flows into the fixed point. This is
a stand-in for the entire multidimensional critical surface, which includes every critical
system of this class. Somewhere in the big K space is an axis describing a simple coupling,
which I call r0. It could be the nearest-neighbor coupling K of an Ising model or some
combination of the elementary couplings r0φ

2 and u0φ
4 of a scalar field theory which can

be varied to attain criticality. We will see how to define the continuum limit by taking a
sequence of points on the r0 axis.

Though the interaction is simple, we can hit criticality by varying its strength. The
critical point, where the r0 axis meets the critical surface, is indicated by r∗.

Now, r∗ is a critical point while S∗ is a fixed point. The two differ by irrelevant terms.
This means that the correlation functions at r∗ will not have the scaling forms of S∗ in
general. To see the ultimate scaling forms associated with the fixed point S∗, we do not
have to renormalize: if we evaluate the correlation functions at r∗ in the limit k→ 0 or
r→∞, they will exhibit these laws. For example, at the Ising critical point, G(k)� 1/k2−η

will result as k→ 0, or G(r)� 1/r
1
4 will follow as r→∞, despite being formulated on a

lattice with just the symmetry of a square.
Of course, we can understand this in terms of the RG. If we limit ourselves to k→ 0,

we are permitted to trade our initial theory with a large � for one with � � k, which is
related by RG flow to S∗.
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Figure 14.6 Flow with one relevant direction (the RT) and one irrelevant direction, which is a
stand-in for the entire critical surface. The axis labeling the simple coupling r0 (which could stand
for r0φ

2) cuts the critical surface at r∗. Look at the points on the trajectory emanating from the point
M on the r0 axis. At point M, �M = 2M and ξM = 2M . We will end up at the theory with cut-off
�0 = 1 GeV and action S′(0) after M RG steps of factor of 2 reduction of �. The sequence of points
S(M), M→∞ defines the continuum limit defined using just a single simple relevant coupling like
r0. If we start at M′ we will reach S′′(0) (equivalent in the infrared to S(0) and S′(0)) after M−1 steps.
This is how one renormalizes in quantum field theory, by choosing simple couplings as a function of
cut-off. The coupling M′ corresponds to �= 2M−1.

To define the continuum theory starting on this axis corresponding to a simple coupling,
we pick a point M such that after M RG steps (of powers of 2) we arrive at the point S′(0)
that differs from S(0), the theory generated from S∗, by a tiny amount in the irrelevant
direction. The tiny irrelevant component will vanish asymptotically, and even when it is
non-zero will make negligible corrections in the infrared. This result is inevitable given
the irrelevance of the difference between r∗ and S∗. We can go to the continuum limit by
starting closer and closer to the critical surface (raising M) and reaching the target S′(0)
after more and more steps. As M→∞, our destination S′(0)will coalesce with S(0), which
lies on the RT.

As a concrete example, consider Figure 13.4. Look at the dotted line parallel to the r0

axis that comes straight down and crosses the critical line joining the Gaussian and WF
fixed points. By starting closer and closer to the critical point where the dotted line crosses
the critical line, we can renormalize the continuum theory based on the WF fixed point. The
flow will initially flow toward the WF fixed point, and eventually will run alongside the RT.
We can arrange to reach a fixed destination on the RT (the analog of S(0)) by starting at
the appropriate distance from the critical line. You can also vary u0 at fixed (negative) r0

to approach the critical line with the same effect.
Now we can see the answer to a common question: how does a field theorist manage

to compensate for a change in cut-off by renormalizing (i.e., varying with �) one or
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two couplings, whereas in Wilson’s scheme, it takes a change in an infinite number of
couplings? In other words, when we flow along the RT, i.e., vary one parameter t, we are
actually varying an infinite number of elementary couplings in K-space. How can a field
theorist achieve the same result varying one or two couplings? The answer is that the field
theorist does not really compensate for all the changes a changing cut-off produces. This
is simply impossible. Whereas in Wilson’s approach all correlation functions right up to
the cut-off are preserved under the RG, in the field theory, only correlations in the limit
k/�→ 0 are preserved.

Let us dig a little deeper into this. Suppose we begin at the point M, where � = 2M ,
and reach the point S′(0) in the figure after M RG steps of size 2. Say we ask what bare
coupling with a cut-off 2M−1 will reproduce the answers of M with � = 2M . It does not
exist in general. Suppose, however, that we ask only about correlations in the infrared limit,
k/�→ 0. Now we may trade the initial couplings for those on the RG trajectory. The point
M flows to S′(0) after M steps, i.e., when�= 1. The difference between S(0) and the S′(0)
are technically and literally irrelevant in the infrared limit. If we start on the r0 axis at M′,
at a suitably chosen point a little to the right of M, we can, after M − 1 steps, reach the
point S′′(0) that agrees with S(0) and S′(0) up to irrelevant corrections. It follows that if
we reduce the cut-off by 2 we must change M to M′, and if we increase the cut-off by 2
we must change M′ to M. In other words, for each cut-off 2M there is a point on the r0 axis
that has the same long-distance physics as the point M does with �= 2M . This is how one
renormalizes in QFT.

In QFT, one does not apologize for considering only the limit k/�→ 0 because there,
� is an artifact that must be sent to∞ at the end. So, k/�→ 0 ∀ k.

Suppose I add a tiny irrelevant coupling, say w6φ
6, to the simple interaction of the

starting point M. (Imagine the point is shifted slightly out of the page by w6.) After M
steps, the representative point again has to end up close to the RT. It may now end up
slightly to the left or right of S′(0) (ignore the component outside the page, which must
have shrunk under the RG). Say it is to the right. This is what would have happened had
we started with no w6 but with a slightly bigger r0 (a little to the right of M). A similar
thing is true if the end point with w6 in the mix is to the left of S′0. In either case, the
effect of an irrelevant perturbation is equivalent to a different choice of the initial relevant
coupling.

It is understood above that w6 is finite in units of the cut-off, and hence is very small in
laboratory units, scaling as �−2 in d= 4. Had it been of order μ−2, where μ is some fixed
mass, it would not have been possible to absorb its effects by renormalization because it
could correspond to an infinite perturbation in the natural units, namely�. But this is what
field theorist tend to do in declaring it a non-renormalizable theory.

14.8 Theory with Two Parameters

Consider next the Gaussian fixed point in d < 4 when it has two relevant directions. Look
at the flow in Figure 14.7. A generic point near the fixed point (the origin) will run away
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invariant under this change of cut-off due to the change in the scale of the field to keep
the k2 term fixed after every iteration. The original φ we started with is related to the φR

that appears in the theory with the new cut-off as

φ(k)= Z
1
2φR(k). (14.90)

Consequently,

Z(N)−
M
2 G(k1, . . . ,kM ,S(N))=G(k1, . . . ,kM ,S(0)), (14.91)

where the action S(0) and the corresponding coupling K(0) are reached after N RG steps
of cut-off reduction by 2.

The Callan–Symanzik equation is derived in quantum field theory from a similar
relation which, however, holds only in the limit�→∞, or more precisely k/�→ 0, where
k is any fixed momentum. The reason for the restriction is that a cut-off change can be
compensated by changing a handful of (marginal and relevant) couplings only in this limit,
in which irrelevant corrections vanish as positive powers of k/�. The Callan–Symanzik
equation is not limited to the study of correlation functions as �→∞ in QFT. We can
also use it in critical phenomena where � is some finite number � � 1/a, provided we
want to study the limit k/�→ 0, i.e., at distances far greater than the lattice size a. All that
is required in both cases is that k/�→ 0.

We begin with the central claim of renormalization theory that the correlations of

φR = Z−
1
2φ, (14.92)

expressed in terms of the renormalized mass and coupling,

GR(k1, . . . ,kM ,m,λ)= lim
�→∞Z−M/2(λ0,�/m0)G(k1, . . . ,kM ,m0(�),λ0(�),�), (14.93)

are finite and independent of �.
For a theory with a mass m we have seen that the renormalized inverse propagator �

and four-point amplitude �R(k1, . . . ,k4) can be made to obey

�R(0)=m2, (14.94)
d�R(k)

dk2

∣∣∣∣
k=0
= 1, (14.95)

�R(0,0,0,0)= λ. (14.96)

We are going to study a critical (massless) theory in what follows. Although we can
impose

�R(0)= 0 (14.97)

to reflect zero mass, we cannot impose Eqs. (14.95) and (14.96). This is because in a
massless theory both these quantities have infrared divergences at k= 0. These are physical,
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just like the diverging Coulomb cross section. So we pick some point k=μ> 0 where these
quantities can be finite, and demand that

d�R(k)

dk2

∣∣∣∣
k=μ
= 1, (14.98)

�R(μ,μ,μ,μ)= λ= μεuR. (14.99)

This calls for some explanation.
First, μ is arbitrary, and any choice of μ can be used to specify a theory. If you change

μ you will have to change λ accordingly if you want to describe the same theory.
Next, we are working in d= 4−ε dimensions, where λ has dimension ε. It is expressed

as the product of a dimensionless parameter uR and the factor με, which restores the right
engineering dimension.

Finally, �(μ,μ,μ,μ) is a schematic: it stands for a symmetric way to choose the
momenta all of the scale μ:

ki · kj = μ
2

3
(4δij− 1). (14.100)

We will not need this expression from now on.
It is to be noted that the theory is not renormalizable in d = 4− ε due to the power-law

infrared divergences that arise. However, if we expand everything in a double series in
u and ε, the infinities (which will be logarithmic) can be tamed order by order, i.e.,
renormalized away. This double expansion will be understood from now on.

14.9.2 Massless M = 2 Correlations in d = 4 − ε
I will illustrate the Callan–Symanzik approach with the case M = 2, that is, two-point
correlations, and study just the critical (massless) case in d = 4− ε. Consider the system
at point P in Figure 14.9 lying on the critical line joining the Gaussian and WF fixed
points. It has a cut-off � and a coordinate u(�)≡ u. We are interested in �(k,u,�) in the
limit k/�→ 0. We cannot use simple perturbation theory, even if u is small, because the
expansion parameter will turn out to be u ln �k . The trick is to move the cut-off to a value of
the order of k, thereby avoiding large logarithms, and work with the coupling u(k) rather
than u= u(�). It is during this cut-off reduction that the coupling will flow from u(�) to
u(k). We expect that u(k)→ u∗, the WF fixed point, as k→ 0.

It is convenient to work with the inverse propagator � =G−1, which obeys

�R(k,uR,μ)= lim
�→∞

[
Z1(u(�),�/μ)�(k,u(�),�)

]
. (14.101)

The key to the Callan–Symanzik equation approach is the observation that since the
left-hand side is independent of � (in the limit �→∞), so must be the right-hand side,
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going from �1 to �2 and account for the field rescaling factor Z. Imagine doing the mode
elimination in stages. Each stage will contribute a factor to Z, and the final Z will be a
product of the Z’s in each step depending on the coupling u at that stage. We reason as
follows:

�(�1)Z(�1)= �(�2)Z(�2)= �R (14.108)

�(�1)= Z(�2)

Z(�1)
�(�2) (14.109)

= e(lnZ(�2)−lnZ(�1))�(�2) (14.110)

= exp

[∫ ln�2

ln�1

d lnZ

d ln�
d ln�

]
�(�2) (14.111)

= exp

[∫ ln�1

ln�2

γ (u(ln�))d ln�

]
�(�2), with (14.112)

γ =− d lnZ

d ln�
. (14.113)

We verify that the solution Eq. (14.107) satisfies Eq. (14.106) by taking �1
∂
∂�1

of both
sides:

�1
∂�(k,u(�1),�1)

∂�1
+β(u(�1))

∂�(k,u(�1),�1)

∂u(�1)
= γ (u(ln�1))�(k,u(�1),�1).

(14.114)

Sometimes Eq. (14.107) is written in terms of an integral over the running coupling
u(�):

�(k,u(�1),�1)= exp

[∫ u1≡u(�1)

u2≡u(�2)

γ (u)
du

β(u)

]
�(k,u(�2),�2).

(14.115)

This version comes in handy if the integral over u is dominated by a zero of the β-function.
We will have occasion to use it.

14.9.3 Computing the β-Function

The first step in using the Callan–Symanzik equation is the computation of β, which we
will do to one loop. We begin with the renormalization condition,

uRμ
ε =�ε

[
u(�)− 3u2(�)

16π2
ln
�

μ

]
, (14.116)

where the right-hand side was encountered earlier for the case d= 4 where ε= 0. Now we
have to introduce the �ε in front as part of the definition of the coupling. Setting to zero
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the ln�-derivative of both sides (at fixed μ and uR), we have (keeping only terms of order
εu and u2),

0= εu(�)+ du(�)

d ln�︸ ︷︷ ︸
β(u)

−3u2(�)

16π2
. (14.117)

(We anticipate that β will be of order εu or u2, and do not take the ln�-derivative of the
3u2 term, for that would lead to a term of order u3 or u2ε.) The result is

β(u)=−εu+ 3u2

16π2
. (14.118)

The way β is defined, as � increases (more relevant to QFT), u flows toward the origin,
while if � decreases (more relevant to us), it flows away and hits a zero at

u∗ = 16επ2

3
. (14.119)

That is,

β(u∗)= 0. (14.120)

This is the WF fixed point. For future use, note that the slope of the β-function at the fixed
point is

ω= dβ(u)

du

∣∣∣∣
u∗
= −ε+ 6u∗

16π2
= ε. (14.121)

This irrelevant exponent ω = ε determines how quickly we approach the fixed point as we
lower the cut-off. Here are the details.

14.9.4 Flow of u − u∗

Let us write a variable cut-off as

�(s)= �
s

, s> 1. (14.122)

It follows that

d

d ln�
=− d

d lns
. (14.123)

The coupling

u(s)≡ u(�/s) (14.124)

flows as follows:

du(s)

d lns
=−du(�)

d ln�
= εu(s)− 3u2

s

16π2
≡ β̄(u)=−β(u). (14.125)

  



14.9 The Callan–Symanzik Equation 279

Integrating the flow of the coupling as a function of s, starting from u(1)= u, gives∫ u(s)

u(1)=u

du′

β̄(u′)
= lns. (14.126)

Now we expand β̄ near the fixed point:

β̄(u′)= β̄(u∗)−ω(u′ − u∗)= 0−ω(u′ − u∗)= (−ω)(u′ − u∗). (14.127)

(The minus in front of ω reflects the switch from β to β̄ =−β.) Substituting this into the
previous equation, we get ∫ u(s)

u(1)=u

du′

(−ω)(u′ − u∗)
= lns, (14.128)

with the solution

u(s)− u∗ = (u− u∗)s−ω = (u− u∗)s−ε. (14.129)

That is, the initial deviation from the fixed point (u− u∗) shrinks by a factor s−ε = s−ω
under the RG transformation �→�/s. Equation (14.129) will be recalled shortly.

14.9.5 Computing γ

The function γ begins at two loops. Armed with the two-loop result

Z = 1+ u2

6(4π)4
ln
μ

�
+·· · , (14.130)

we find

γ =− d lnZ

d ln�
= u2

6(4π)4
. (14.131)

At the fixed point

u∗ = 16π2ε

3
, (14.132)

we have

γ (u∗)≡ γ ∗ = ε2

54
. (14.133)

For later use, note that

γ ′ = dγ

du

∣∣∣∣
u∗
= ε

144π2
. (14.134)
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14.9.6 Computing �(k,u,�)

Now we are ready to confront the correlation function �(k,u,�), which is the two-point
function on the critical line shown in Figure 14.9. We want to know its behavior as a
function of k as k→ 0. We expect it to be controlled by the WF fixed point.

The equation obeyed by �(k,u,�) is[
− ∂

∂ lns
− β̄(u(s)) ∂

∂u
− γ (u(s))

]
�(k,u(s),�/s)= 0. (14.135)

Suppose we are at the fixed point, where β̄ = 0 and

γ = γ (u∗)≡ γ ∗. (14.136)

The equation to solve is

∂�(k,u∗,�/s)
∂ lns

=−γ (u∗)�(k,u∗,�/s), (14.137)

with an obvious solution

�(k,u∗,�)= sγ
∗
�(k,u∗,�/s). (14.138)

By dimensional analysis,

�(k,u∗,�/s)= k2f

(
k

�/s

)
= k2f

(
ks

�

)
. (14.139)

Substituting this into Eq. (14.138), we arrive at

�(k,u∗,�)= sγ
∗
k2f

(
ks

�

)
. (14.140)

Now we choose

s= �
k

, (14.141)

which just means

�

s
= k, (14.142)

i.e., the new cut-off equals the momentum of interest. With this choice,

�(k,u∗,�)=
(
�

k

)γ ∗
k2f (1)� k2−γ ∗ . (14.143)

Comparing to the standard form

�(k)� k2−η, (14.144)
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we find that

η= γ (u∗)≡ γ ∗. (14.145)

In case you wondered how �(k) can go as k2−η when it has engineering dimension 2,

the answer is given above: k−η is really
(

k
�

)−η
.

Finally, we ask how subleading corrections to the fixed point behavior arise if we start
at some u �= u∗ with a k that is approaching zero. For this, we return to the solution to the
Callan–Symanzik equation

�(k,u(�1),�1)= exp

[∫ ln�1

ln�2

γ (u(ln�′))d ln�′
]
�(k,u(�2),�2).

(14.146)

Let

�1 =�, (14.147)

�2 =�/s, (14.148)

u(�/s)≡ u(s), (14.149)

u(�)≡ u(1). (14.150)

Then

�(k,u(1),�)= exp

[∫ 1

s
γ (u′(s′))−ds′

s′

]
�(k,u(s),�/s). (14.151)

Corrections are going to arise from both the exponential factor and �(k,u(s),�/s)), due
to the fact that at any non-zero �

s = k, the coupling u(s) is close to, but not equal to, u∗,
which is reached only asymptotically.

Consider first the exponential factor. Expanding γ near u∗ as

γ (u′)= γ ∗ + γ ′(u′ − u∗)+·· · , (14.152)

γ ′ = ε

144π2
[Eq. (14.134)], (14.153)

we have, in the exponent,∫ 1

s
γ (u′(s′))−ds′

s′
=

∫ s

1
(γ ∗ + γ ′(u(s′)− u∗)ds′

s′

= γ ∗ lns+ γ ′(u− u∗)
∫ s

1
(s′)−ω ds′

s′

= γ ∗ lns+ γ
′

ω
(u− u∗)(1− s−ω). (14.154)
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Thus the exponential factor becomes

exp[· · · ]= sγ
∗
(

1+ γ
′

ω
(u− u∗)(1− s−ω) · · ·

)
. (14.155)

Next, consider

�(k,u(s),�/s))= �(k,u∗ + u(s)− u∗,�/s)

= k2f

[
ks

�
,u∗ + (u(s)− u∗)

]

= k2f

[
ks

�
,u∗ + (u− u∗)s−ω

]
. (14.156)

If we now set

s= �
k

(14.157)

and recall that ω = ε, we find, upon putting the two factors in Eqs. (14.155) and (14.156)

together, an irrelevant correction of the form
(

k
�

)ε
:

�(k,u(�),�)= k2
(
�

k

)γ ∗ (
a+ c

(
k

�

)ε)
, (14.158)

where a and c are some constants.

14.9.7 Variations of the Theme

The preceding introduction was aimed at giving you an idea of how the Callan–Symanzik
machine works by focusing on �, corresponding to two-particle correlations, and only for
the critical case. There are so many possible extensions and variations.

The first variation is to go to the non-critical theory, where, in addition to the
marginal coupling u, we have a relevant coupling, denoted by t, which as usual measures
deviation from criticality. It multiplies the operator φ2, whose presence calls for additional
renormalization. The final result will be quite similar: as k/�→ 0, the flow will first
approach the fixed point and then follow the renormalized trajectory.

Next, we can go from correlations of two fields to M fields and work with �(k1, . . . ,kM).
Finally, let us go back to the relation between bare and renormalized �’s:

�R(k,uR(μ),μ)= lim
�→∞Z(u(�),�/μ)�(k,u(�),�). (14.159)

We got the Callan–Symanzik equation by saying that since the �R on the left-hand side had
no knowledge of �, i.e., was cut-off independent, we could set the ln�-derivative of the
right-hand side to zero. This equation describes how the bare couplings and correlations
have to change with the cut-off to keep fixed some renormalized quantities directly related
to experiment.
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Instead, we could argue that since � does not know about μ, the lnμ-derivative of the
left-hand side must equal the same derivative acting on just the Z on the right-hand side
(which has been expressed as Z(uR(μ),�/μ)). The resulting equation,[

∂

∂ lnμ
+β ∂

∂uR
− γ

]
�R(k,uR(μ),μ)= 0, (14.160)

where

β(uR)= ∂uR

∂ lnμ

∣∣∣∣
u(�),�

, (14.161)

γ (uR)= ∂ lnZ

∂ lnμ

∣∣∣∣
u(�),�

, (14.162)

dictates how the renormalized coupling and correlations must change with μ in order to
represent the same underlying bare theory. (Again, the dimensionless functions β and γ
cannot depend on μ/� because they are determined by �R, which does not know about�.)

We can use either approach to get critical exponents, flows, and Green’s functions
(because � and �R differ by Z, which is momentum and position independent), but
there are cultural preferences. In statistical mechanics, the bare correlations are physically
significant and describe underlying entities like spins. The cut-off is real and given by
� � 1/a. To particle physicists, the cut-off is an artifact, and the bare Green’s functions
and couplings are crutches to be banished as soon as possible so that they can work with
experimentally measurable, finite, renormalized quantities defined on the scale μ. They
prefer the second version based on �R.
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